miércoles, 18 de mayo de 2011

Las estrellas.

LAS ESTRELLAS EN EL UNIVERSO 

Las estrellas son masas de gases, principalmente hidrógeno y helio, que emiten luz. Se encuentran a temperaturas muy elevadas. En su interior hay reacciones nucleares.

El Sol es una estrella. Vemos las estrellas, excepto el Sol, como puntos luminosos muy pequeños, y sólo de noche, porque están a enormes distancias de nosotros. Parecen estar fijas, manteniendo la misma posición relativa en los cielos año tras año. En realidad, las estrellas están en rápido movimiento, pero a distancias tan grandes que sus cambios de posición se perciben sólo a través de los siglos.

El número de estrellas observables a simple vista desde la Tierra se ha calculado en unas 8.000, la mitad en cada hemisferio. Durante la noche no se pueden ver más de 2.000 al mismo tiempo, el resto quedan ocultas por la neblina atmosférica, sobre todo cerca del horizonte, y la pálida luz del cielo.

Los astrónomos han calculado que el número de estrellas de la Vía Láctea, la galaxia a la que pertenece el Sol, asciende a cientos de miles de millones.

Como nuestro Sol, una estrella típica tiene una superficie visible llamada fotosfera, una atmósfera llena de gases calientes y, por encima de ellas, una corona más difusa y una corriente de partículas denominada viento estelar. Las áreas más frías de la fotosfera, que en el Sol se llaman manchas solares, probablemente se encuentren en otras estrellas comunes. Esto se ha podido comprobar en algunas grandes estrellas próximas mediante interferometría.

La estructura interna de las estrellas no se puede observar de forma directa, pero hay estudios que indican corrientes de convección y una densidad y una temperatura que aumentan hasta alcanzar el núcleo, donde tienen lugar reacciones termonucleares.

Las estrellas se componen sobre todo de hidrógeno y helio, con cantidad variable de elementos más pesados.

CLASIFICACION DE LAS ESTRELLAS 

El estudio fotográfico de los espectros estelares lo inició en 1885 el astrónomo Edward Pickering en el observatorio del Harvard College y lo concluyó su colega Annie J. Cannon. Esta investigación condujo al descubrimiento de que los espectros de las estrella están dispuestos en una secuencia continua según la intensidad de ciertas líneas de absorción. Las observaciones proporcionan datos de las edades de las diferentes estrellas y de sus grados de desarrollo.

Las diversas etapas en la secuencia de los espectros, designadas con las letras O, B, A, F, G, K y M, permiten una clasificación completa de todos los tipos de estrellas. Los subíndices del 0 al 9 se utilizan para indicar las sucesiones en el modelo dentro de cada clase.

Clase O: Líneas del helio, el oxígeno y el nitrógeno, además de las del hidrógeno. Comprende estrellas muy calientes, e incluye tanto las que muestran espectros de línea brillante del hidrógeno y el helio como las que muestran líneas oscuras de los mismos elementos.

Clase B: Líneas del helio alcanzan la máxima intensidad en la subdivisión B2 y palidecen progresivamente en subdivisiones más altas. La intensidad de las líneas del hidrógeno aumenta de forma constante en todas las subdivisiones. Este grupo está representado por la estrella Epsilon Orionis.

Clase A: Comprende las llamadas estrellas de hidrógeno con espectros dominados por las líneas de absorción del hidrógeno. Una estrella típica de este grupo es Sirio.

Clase F: En este grupo destacan las llamadas líneas H y K del calcio y las líneas características del hidrógeno. Una estrella notable en esta categoría es Delta Aquilae.

Clase G: Comprende estrellas con fuertes líneas H y K del calcio y líneas del hidrógeno menos fuertes. También están presentes los espectros de muchos metales, en especial el del hierro. El Sol pertenece a este grupo y por ello a las estrellas G se les denomina "estrellas de tipo solar".

Clase K: Estrellas que tienen fuertes líneas del calcio y otras que indican la presencia de otros metales. Este grupo está tipificado por Arturo.

Clase M; Espectros dominados por bandas que indican la presencia de óxidos metálicos, sobre todo las del óxido de titanio. El final violeta del espectro es menos intenso que el de las estrellas K. La estrella Betelgeuse es típica de este grupo.

Las estrellas más grandes que se conocen son las supergigantes, con diámetros unas 400 veces mayores que el del Sol, en tanto que las estrellas conocidas como "enanas blancas" pueden tener diámetros de sólo una centésima del Sol. Sin embargo, las estrellas gigantes suelen ser difusas y pueden tener una masa apenas unas 40 veces mayor que la del Sol, mientras que las enanas blancas son muy densas a pesar de su pequeño tamaño.

Puede haber estrellas con una masa 1.000 veces mayor que la del Sol y, a escala menor, bolas de gas caliente demasiado pequeñas para desencadenar reacciones nucleares. Un objeto que puede ser de este tipo (una enana marrón) fue observado por primera vez en 1987, y desde entonces se han detectado otros.

El brillo de las estrellas se describe en términos de magnitud. Las estrellas más brillantes pueden ser hasta 1.000.000 de veces más brillantes que el Sol; las enanas blancas son unas 1.000 veces menos brillantes.

Las clases establecidas por Annie Jump Cannon se identifican con colores:

- Color azul, como la estrella I Cephei
- Color blanco-azul, como la estrella Spica
- Color blanco, como la estrella Vega
- Color blanco-amarillo, como la estrella Proción
- Color amarillo, como el Sol
- Color naranja, como Arcturus
- Color rojo, como la estrella Betelgeuse.

A menudo las estrellas se nombran usando la referencia a su tamaño y a su color: enanas blancas, gigantes rojas...

EVOLUCIÓN DE LAS ESTRELLAS.

Las estrellas evolucionan durante millones de años. Nacen cuando se acumula una gran cantidad de materia en un lugar del espacio. Se comprime y se calienta hasta que empieza una reacción nuclear, que consume la materia, convirtiéndola en energía. Las estrellas pequeñas la gastan lentamente y duran más que las grandes.

Las teorías sobre la evolución de las estrellas se basan en pruebas obtenidas de estudios de los espectros relacionados con la luminosidad. Las observaciones demuestran que muchas estrellas se pueden clasificar en una secuencia regular en la que las más brillantes son las más calientes y las más pequeñas, las más frías.

Esta serie de estrellas forma una banda conocida como la secuencia principal en el diagrama temperatura-luminosidad conocido como diagrama Hertzsprung-Russell. Otros grupos de estrellas que aparecen en el diagrama incluyen a las estrellas gigantes y enanas antes mencionadas.


La vida de una estrella

El ciclo de vida de una estrella empieza como una gran masa de gas relativamente fría. La contracción del gas eleva la temperatura hasta que el interior de la estrella alcanza 1.000.000 °C. En este punto tienen lugar reacciones nucleares, cuyo resultado es que los núcleos de los átomos de hidrógeno se combinan con los de deuteriopara formar núcleos de helio. Esta reacción libera grandes cantidades de energía, y se detiene la contracción de la estrella.

Cuando finaliza la liberación de energía, la contracción comienza de nuevo y la temperatura de la estrella vuelve a aumentar. En un momento dado empieza una reacción entre el hidrógeno, el litio y otros metales ligeros presentes en el cuerpo de la estrella. De nuevo se libera energía y la contracción se detiene.

Cuando el litio y otros materiales ligeros se consumen, la contracción se reanuda y la estrella entra en la etapa final del desarrollo en la cual el hidrógeno se transforma en helio a temperaturas muy altas gracias a la acción catalítica del carbono y el nitrógeno. Esta reacción termonuclear es característica de la secuencia principal de estrellas y continúa hasta que se consume todo el hidrógeno que hay.

La estrella se convierte en una gigante roja y alcanza su mayor tamaño cuando todo su hidrógeno central se ha convertido en helio. Si sigue brillando, la temperatura del núcleo debe subir lo suficiente como para producir la fusión de los núcleos de helio. Durante este proceso es probable que la estrella se haga mucho más pequeña y más densa.

Cuando ha gastado todas las posibles fuentes de energía nuclear, se contrae de nuevo y se convierte en una enana blanca. Esta etapa final puede estar marcada por explosiones conocidas como "novas". Cuando una estrella se libera de su cubierta exterior explotando como nova o supernova, devuelve al medio interestelar elementos más pesados que el hidrógeno que ha sintetizado en su interior.

Las generaciones futuras de estrellas formadas a partir de este material comenzarán su vida con un surtido más rico de elementos pesados que las anteriores generaciones. Las estrellas que se despojan de sus capas exteriores de una forma no explosiva se convierten en nebulosas planetarias, estrellas viejas rodeadas por esferas de gas que irradian en una gama múltiple de longitudes de onda.




De estrella a Agujero Negro

Las estrellas con una masa mucho mayor que la del Sol sufren una evolución más rápida, de unos pocos millones de años desde su nacimiento hasta la explosión de una supernova. Los restos de la estrella pueden ser una estrella de neutrones.

Sin embargo, existe un límite para el tamaño de las estrellas de neutrones, más allá del cual estos cuerpos se ven obligados a contraerse hasta que se convierten en un agujero negro, del que no puede escapar ninguna radiación.

Estrellas típicas como el Sol pueden persistir durante muchos miles de millones de años. El destino final de las enanas de masa baja es desconocido, excepto que cesan de irradiar de forma apreciable. Lo más probable es que se conviertan en cenizas o enanas negras.


No hay comentarios:

Publicar un comentario